Data-based identifiability analysis of non-linear dynamical models
Open Access
- 28 July 2007
- journal article
- research article
- Published by Oxford University Press (OUP) in Bioinformatics
- Vol. 23 (19) , 2612-2618
- https://doi.org/10.1093/bioinformatics/btm382
Abstract
Motivation: Mathematical modelling of biological systems is becoming a standard approach to investigate complex dynamic, non-linear interaction mechanisms in cellular processes. However, models may comprise non-identifiable parameters which cannot be unambiguously determined. Non-identifiability manifests itself in functionally related parameters, which are difficult to detect. Results: We present the method of mean optimal transformations, a non-parametric bootstrap-based algorithm for identifiability testing, capable of identifying linear and non-linear relations of arbitrarily many parameters, regardless of model size or complexity. This is performed with use of optimal transformations, estimated using the alternating conditional expectation algorithm (ACE). An initial guess or prior knowledge concerning the underlying relation of the parameters is not required. Independent, and hence identifiable parameters are determined as well. The quality of data at disposal is included in our approach, i.e. the non-linear model is fitted to data and estimated parameter values are investigated with respect to functional relations. We exemplify our approach on a realistic dynamical model and demonstrate that the variability of estimated parameter values decreases from 81 to 1% after detection and fixation of structural non-identifiabilities. Availability: Our algorithm is written in Matlab and R. It is available from the authors on request. An implementation of ACE, written in Matlab as well as in C, is available online at www.stefanhengl.de Contact:hengl@fdm.uni-freiburg.de Supplementary information: Supplementary data are available at Bioinformatics online.Keywords
This publication has 13 references indexed in Scilit:
- Simulation Methods for Optimal Experimental Design in Systems BiologySIMULATION, 2003
- Parameter identifiability of nonlinear systems: the role of initial conditionsAutomatica, 2003
- Experimental Design and Data Analysis for BiologistsPublished by Cambridge University Press (CUP) ,2002
- Global identifiability of nonlinear models of biological systemsIEEE Transactions on Biomedical Engineering, 2001
- Parametric, nonparametric and parametric modelling of a chaotic circuit time seriesPhysics Letters A, 2000
- On global identifiability for arbitrary model parametrizationsAutomatica, 1994
- Remarks on Functional Canonical Variates, Alternating Least Squares Methods and AceThe Annals of Statistics, 1990
- Similarity transformation approach to identifiability analysis of nonlinear compartmental modelsMathematical Biosciences, 1989
- Numerical parameter identifiability and estimability: Integrating identifiability, estimability, and optimal sampling designMathematical Biosciences, 1985
- System identifiability based on the power series expansion of the solutionMathematical Biosciences, 1978