Pressure-driven flow of a thin viscous sheet

Abstract
Systematic asymptotic expansions are used to find the leading-order equations for the pressure-driven flow of a thin sheet of viscous fluid. Assuming the fluid geometry to be slender with non-negligible curvatures, the Navier–Stokes equations with appropriate free-surface conditions are simplified to give a ‘shell-theory’ model. The fluid geometry is not known in advance and a time-dependent coordinate frame has to be employed. The effects of surface tension, gravity and inertia can also be incorporated in the model.

This publication has 12 references indexed in Scilit: