Asymptotic solutions for finite deformation of thin shells of revolution with a small circular hole

Abstract
The method of matched asymptotic expansions is used to describe the finite deformation of thin shells of revolution with a small circular hole at the apex. The loading is assumed to be a rotationally symmetric, smoothly varying normal pressure. The mathematical problem is of singular perturbation type characterized by a boundary layer region at the inner edge of the small hole. The analytical results are compared with numerical approximations, and formulas for the stress concentration factors at the hole are presented.

This publication has 5 references indexed in Scilit: