Determination of Eigenvalues of Matrices Having Polynomial Elements
- 1 June 1958
- journal article
- Published by Society for Industrial & Applied Mathematics (SIAM) in Journal of the Society for Industrial and Applied Mathematics
- Vol. 6 (2) , 163-171
- https://doi.org/10.1137/0106009
Abstract
Summary:Im Artikel ist eine Abschätzung für das Polynomialproblem $(\lambda^rA_0+\lambda^{r-1}A_1+\ldots +A_r)x=0$ angeführt, wo $A_0,A_1,\ldots, A_r)$ quadratische Matrizen sind. Im Falle $r=1,\ A_0=E$ stellt diese Abschatzung die Gerschgorinabschätzung für Eigenwerte einer Matrix dar
Keywords
This publication has 5 references indexed in Scilit:
- Results Using Lanczos’ Method for Finding Eigenvalues of Arbitrary MatricesJournal of the Society for Industrial and Applied Mathematics, 1958
- On the application of infinite systems of ordinary differential equations to perturbations of plane Poiseuille flowQuarterly of Applied Mathematics, 1958
- On the Numerical Solution of Characteristic Equations in Flutter AnalysisJournal of the ACM, 1958
- A Method for Solving Algebraic Equations Using an Automatic ComputerMathematical Tables and Other Aids to Computation, 1956
- An iteration method for the solution of the eigenvalue problem of linear differential and integral operatorsJournal of Research of the National Bureau of Standards, 1950