Core-Substituted Naphthalene Bisimides: New Fluorophors with Tunable Emission Wavelength for FRET Studies

Abstract
Highly colored and photoluminescent naphthalene bisimide dyes have been synthesized from 2,6-dichloronaphthalene bisanhydride 1 by means of a stepwise nucleophilic displacement of the two chlorine atoms by alkoxides and/or alkyl amines. The alkoxy-substituted derivatives are yellow dyes with green emission and low photoluminescence quantum yields, whereas the amine-substituted derivatives exhibit a color range from red to blue with strong photoluminescence up to 76 %. Structure–property relationships for this class of two-dimensional chromophores were evaluated based on a single-crystal X-ray analysis for dye 5 a, the observed solvatochromism, and quantum-chemical calculations. Owing to the simple tuning of the absorption properties over the whole visible range by the respective substituents, the pronounced brilliancy, and the intense photoluminescence, this class of dyes is considered to be highly suited for numerous applications such as fluorescent labeling of biomacromolecules and light-harvesting in supramolecular assemblies. As an important step towards such applications efficient FRET (fluorescence resonance energy transfer) has been demonstrated for a covalently tethered bichromophoric compound that contains a red and a blue naphthalene bisimide dye.