Abstract
All the experiments were carried out in slices of rat prefrontal cortex maintained in vitro. The effect of 2-amino-5-phosphonovalerate (APV) was tested on the postsynaptic potential (PSP) recorded in layer V pyramidal cells, in response to single or high frequency stimulation of the superficial layers I–II. Wash-out of Mg2+ increased the amplitude and duration of the PSPs. This effect resulted from activation of N-methyl-D-aspartate (NMDA) receptors since it was suppressed by bath application of APV. Furthermore, in every cell tested in Mg2+ containing medium (N=16), exposure to APV reversibly reduced both mono- and polysynaptic components of the PSPs, indicating that, even in the control solution, activation of NMDA-coupled channels contributed to these synaptic events. Finally, the anomalous voltage-dependence of the EPSP in the presence of Mg2+ and its sensitivity to APV suggests that at least a fraction of the NMDA receptors are postsynaptically located. Tetanization was applied to the afferents of cells bathed in control- or APV-medium. Long-term potentiation (LTP) or long-term depression (LTD) is defined as an increase or a decrease respectively, of the PSPs peak amplitude or initial slope, lasting 20 min. In the control medium, LTP in synaptic efficacy was observed in 34% of the cells and LTD in 48% (N=23). When exposed to APV, none of the cells tested (N=16) showed LTP of the response. In contrast, the tetanus induced a LTD of the PSP amplitude or slope in 14 out of these 16 cells. The percentage of cells showing LTD in synaptic efficacy (87%) when the NMDA receptors activation was blocked was significantly higher than that in control-medium.