The effects oftrans fatty acids on fatty acyl Δ5 desaturation by human skin fibroblasts

Abstract
The effectiveness of different fatty acids as inhibitors of fatty acyl Δ5 desaturation activity in human skin fibroblasts has been investigated. When incubated with 2.25 μM [14C] eicosatrienoate (20∶3ω6) in otherwise lipid‐free medium, these cells rapidly incorporate the radiolabeled fatty acid into cellular glycerolipids and desaturate it to produce both [14C] arachidonate and [14C] docosatetraenoate. The Δ5 desaturation activity can be enhanced by prior growth of the cells without serum lipids. Elaidate (9t–18∶1) is a potent inhibitor of Δ5 desaturation whiletrans‐vaccenate (11t–18∶1) is virtually without effect. Oleate and linoleate are only mildly inhibitory. Linoelaidate (9t, 12t–18∶2) is more inhibitory than linoleate but significantly less effective than elaidate. The effects of elaidate can be readily overcome by increasing the concentration of exogenous eicosatrienoate. Studies with a variety oftrans monounsaturates of differing chain lengths indicate that the ω9trans fatty acids are potent inhibitors of Δ5 desaturation, while ω7trans fatty acids are relatively ineffective. Intact human fibroblasts could thus be important in characterizing novel fatty acids as selective inhibitors of arachidonate synthesis in vivo.

This publication has 25 references indexed in Scilit: