Direct Measurement of Hydration-Related Dynamic Changes in Lysozyme using Inelastic Neutron Scattering Spectroscopy

Abstract
Inelastic neutron scattering spectroscopy is used to investigate dynamic changes in lysozyme powder at two different low D,0 hydrations (0.07g D2,O/g protein and 0,20 g D2,O/g protein). In the higher hydration sample, the inelastic scattering between 0.8 and 4.0 cm−1 energy transfer is increased and the elastic scattering is decreased. The decreased elastic scattering suggests increased atomic amplitudes of motion and the increased 0.8 to 4.0 cm−1 scattering suggests increased motions in this frequency range. Comparison with normal mode models of lysozyme dynamics shows that the inelastic difference occurs in the frequency region predicted for the lowest frequency, largest amplitude, global modes of the molccule[M. Levitt, C. Sanderand P. S. Stern, J. Mol. Biol. 181. 423 (1985). B.Brooks and M.Karplus.Prot. Natl Acad. Sci (U.S.A) 82. 4995 (1985), R.E. Bruccoleri, M. Karplus and J.A. McCammon, Biopolymers 25 1767 (1986)]. Our results are consistent with a model in which an increased number of low frequency global modes are present in the higher hydrated sample.

This publication has 16 references indexed in Scilit: