Abstract
The bearing area of conventional texture on magnetic recording disk surfaces shows a tendency of increase with a decrease in surface height. This is believed to be a major reason for the increase of head/disk friction with the accumulation of CSS cycles. In view of this, a novel type of texture is developed in this study. This type of texture consists of discrete pillar-shaped asperities, whose height and shape can be optimized to reduce friction build-up and wear depth during CSS operation. It also allows lower asperity height to reduce take-off velocity and glide height. In addition, it is suitable for landing zone texturing. The discrete texture remarkably outperforms mechanical texture during CSS tests.