Abstract
Current density distributions in a fine resolution (2 mm) anatomically realistic voxel model of the human body have been calculated for uniform, low frequency vertically aligned electric fields for a body grounded and isolated from 50 Hz to 10 MHz. The voxel phantom NORMAN is used which has a height of 1.76 m and a mass of 73 kg. There are 8.3 million voxels in the body differentiated into 37 tissue types. Both finite-difference potential and time-domain methods were used. Results are presented for the current density averaged over 1 cm2 in muscle, heart, brain and retina. Electric field values required to reach the NRPB and ICNIRP basic restrictions on current density are derived and compared with the external field guidelines from these standards.

This publication has 11 references indexed in Scilit: