A simple linear analytic method for Brillouin zone integration of spectral functions in the complex energy plane
- 30 March 1986
- journal article
- Published by IOP Publishing in Journal of Physics C: Solid State Physics
- Vol. 19 (9) , 1283-1292
- https://doi.org/10.1088/0022-3719/19/9/002
Abstract
A generalisation of the analytical tetrahedron method is given which allows the evaluation of spectral functions over the entire complex energy plane. Linear interpolation of both the matrix element and the dispersion relations leads to compact and transparent formulae which are free of singularities and well suited for automatic computation. An illustrative calculation is presented of the lattice Green function G(E) for the simple cubic lattice for Im E=0.001 and 0.1.Keywords
This publication has 21 references indexed in Scilit:
- Simple Brillouin-zone scheme for the spectral properties of solidsPhysical Review B, 1977
- A product representation for cubic harmonics and special directions for the determination of the Fermi surface and related propertiesCanadian Journal of Physics, 1976
- Tetrahedron method of zone integration: Inclusion of matrix elementsPhysical Review B, 1975
- Theory of impurity scattering in dilute metal alloys based on the muffin-tin modelPhysical Review B, 1975
- Special directions in the brillouin zoneSolid State Communications, 1975
- The electronic structure of h.c.p. YtterbiumSolid State Communications, 1971
- Lattice Green's Function for the Simple Cubic Lattice in Terms of a Mellin-Barnes Type IntegralJournal of Mathematical Physics, 1971
- Calculation of Constant-Energy Surfaces for Copper by the Korringa-Kohn-Rostoker MethodPhysical Review B, 1967
- Houston's Method and Its Application to the Calculation of Characteristic Temperatures of Cubic CrystalsPhysical Review B, 1956
- Normal Vibrations of a Crystal LatticeReviews of Modern Physics, 1948