Quantitative analysis of the formation and diffusion of A 1 -adenosine receptor-antagonist complexes in single living cells
- 16 March 2004
- journal article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 101 (13) , 4673-4678
- https://doi.org/10.1073/pnas.0400420101
Abstract
The A1-adenosine receptor (A1-AR) is a G protein-coupled receptor that mediates many of the physiological effects of adenosine in the brain, heart, kidney, and adipocytes. Currently, ligand interactions with the A1-AR can be quantified on large cell populations only by using radioligand binding. To increase the resolution of these measurements, we have designed and characterized a previously undescribed fluorescent antagonist for the A1-AR, XAC-BY630, based on xanthine amine congener (XAC). This compound has been used to quantify ligand-receptor binding at a single cell level using fluorescence correlation spectroscopy (FCS). XAC-BY630 was a competitive antagonist of A1-AR-mediated inhibition of cAMP accumulation [log10 of the affinity constant (pKb) = 6.7)] and stimulation of inositol phosphate accumulation (pKb = 6.5). Specific binding of XAC-BY630 to cell surface A1-AR could also be visualized in living Chinese hamster ovary (CHO)-A1 cells by using confocal microscopy. FCS analysis of XAC-BY630 binding to the membrane of CHO-A1 cells revealed three components with diffusion times (tauD) of 62 micros (tauD1, free ligand), 17 ms (tauD2, A1-AR-ligand), and 320 ms (tauD3). Confirmation that tauD2 resulted from diffusion of ligand-receptor complexes came from the similar diffusion time observed for the fluorescent A1-AR-Topaz fusion protein (15 ms). Quantification of tauD2 showed that the number of receptor-ligand complexes increased with increasing free ligand concentration and was decreased by the selective A1-AR antagonist, 8-cyclopentyl-1,3-dipropylxanthine. The combination of FCS with XAC-BY630 will be a powerful tool for the characterization of ligand-A1-AR interactions in single living cells in health and disease.Keywords
This publication has 31 references indexed in Scilit:
- Pharmacology and direct visualisation of BODIPY‐TMR‐CGP: a long‐acting fluorescent β2‐adrenoceptor agonistBritish Journal of Pharmacology, 2003
- Lateral Mobility and Specific Binding to GABAA Receptors on Hippocampal Neurons Monitored by Fluorescence Correlation SpectroscopyBiochemistry, 2003
- Confined Diffusion Without Fences of a G-Protein-Coupled Receptor as Revealed by Single Particle TrackingBiophysical Journal, 2003
- Spectroscopic Study and Evaluation of Red-Absorbing Fluorescent DyesBioconjugate Chemistry, 2002
- Environment and Mobility of a Series of Fluorescent Reporters at the Amino Terminus of Structurally Related Peptide Agonists and Antagonists Bound to the Cholecystokinin ReceptorJournal of Biological Chemistry, 2002
- Insulin binding monitored by fluorescence correlation spectroscopyDiabetologia, 2001
- Fluorescence Correlation Spectroscopy Detects Galanin Receptor Diversity on Insulinoma CellsBiochemistry, 2001
- Fluorescence Correlation Spectroscopy and Its Potential for Intracellular ApplicationsCell Biochemistry and Biophysics, 2001
- A separation method for the assay of adenylylcyclase, intracellular cyclic AMP, and cyclic-AMP phosphodiesterase using tritium-labeled substratesAnalytical Biochemistry, 1992
- Trifunctional agents as a design strategy for tailoring ligand properties: irreversible inhibitors of A1 adenosine receptorsBioconjugate Chemistry, 1991