Ultrastructural distribution of Ca++ within neurons

Abstract
We used the oxalate-pyroantimonate technique to determine the ultrastructural distribution of Ca++ in neurons of the rat sciatic nerve. The content of the precipitate was confirmed by X-ray microanalysis and appropriate controls. In the cell bodies of the dorsal root ganglia, Ca++ precipitate was found in the Golgi, mitochondria, multivesicular bodies and large vesicles of the cytoplasm but not in lysosomes, and was prominently absent from regions of rough endoplasmic reticulum and ribosomes. It was seen in the nucleus but not in the nuclear bodies or nucleolus. Within the axon itself, Ca++ precipitate was also found sequestered in mitochondria and smooth endoplasmic reticulum. In addition Ca++ precipitate found diffusely throughout the axoplasm exhibited a discrete and heterogeneous distribution. In myelinated fibers the amount of precipitate decreased predictably in the axoplasm beneath the Schmidt-Lanterman clefts and in the paranodal regions at the nodes of Ranvier. This correlated with the presence of dense precipitate in the Schmidt-Lanterman clefts them-selves and in the paranodal loops of myelin. Intracytoplasmic ionic Ca++ is maintained at 10−7 M by balanced processes of influx, sequestration and extrusion. The irregular distribution of Ca++ precipitate in the axoplasm of myelinated fibers suggests that there may be specific regions of preferential efflux across the axolemma.