Serum Proteomic Fingerprinting Discriminates Between Clinical Stages and Predicts Disease Progression in Melanoma Patients
- 1 August 2005
- journal article
- melanoma
- Published by American Society of Clinical Oncology (ASCO) in Journal of Clinical Oncology
- Vol. 23 (22) , 5088-5093
- https://doi.org/10.1200/jco.2005.03.164
Abstract
Purpose: Currently known serum biomarkers do not predict clinical outcome in melanoma. S100-β is widely established as a reliable prognostic indicator in patients with advanced metastatic disease but is of limited predictive value in tumor-free patients. This study was aimed to determine whether molecular profiling of the serum proteome could discriminate between early- and late-stage melanoma and predict disease progression. Patients and Methods: Two hundred five serum samples from 101 early-stage (American Joint Committee on Cancer [AJCC] stage I) and 104 advanced stage (AJCC stage IV) melanoma patients were analyzed by matrix-assisted laser desorption/ionisation (MALDI) time-of-flight (ToF; MALDI-ToF) mass spectrometry utilizing protein chip technology and artificial neural networks (ANN). Serum samples from 55 additional patients after complete dissection of regional lymph node metastases (AJCC stage III), with 28 of 55 patients relapsing within the first year of follow-up, were analyzed in an attempt to predict disease recurrence. Serum S100-β was measured using a sandwich immunoluminometric assay. Results: Analysis of 205 stage I/IV serum samples, utilizing a training set of 94 of 205 and a test set of 15 of 205 samples for 32 different ANN models, revealed correct stage assignment in 84 (88%) of 96 of a blind set of 96 of 205 serum samples. Forty-four (80%) of 55 stage III serum samples could be correctly assigned as progressors or nonprogressors using random sample cross-validation statistical methodologies. Twenty-three (82%) of 28 stage III progressors were correctly identified by MALDI-ToF combined with ANN, whereas only six (21%) of 28 could be detected by S100-β. Conclusion: Validation of these findings may enable proteomic profiling to become a valuable tool for identifying high-risk melanoma patients eligible for adjuvant therapeutic interventions.Keywords
This publication has 13 references indexed in Scilit:
- Clinical proteomics: Written in bloodNature, 2003
- A prototype methodology combining surface‐enhanced laser desorption/ionization protein chip technology and artificial neural network algorithms to predict the chemoresponsiveness of breast cancer cell lines exposed to Paclitaxel and Doxorubicin under in vitro conditionsProteomics, 2003
- The Human Plasma ProteomeMolecular & Cellular Proteomics, 2002
- Soluble HLA‐DR is a potent predictive indicator of disease progression in serum from early‐stage melanoma patientsInternational Journal of Cancer, 2002
- Serum S100 concentrations are not useful in predicting micrometastatic disease in cutaneous malignant melanomaBritish Journal of Dermatology, 2002
- Use of proteomic patterns in serum to identify ovarian cancerPublished by Elsevier ,2002
- On the release and half‐life of S100B protein in the peripheral blood of melanoma patientsInternational Journal of Cancer, 2001
- Final Version of the American Joint Committee on Cancer Staging System for Cutaneous MelanomaJournal of Clinical Oncology, 2001
- Increased Serum Concentration of Angiogenic Factors in Malignant Melanoma Patients Correlates With Tumor Progression and SurvivalJournal of Clinical Oncology, 2001
- S100-Beta, Melanoma-Inhibiting Activity, and Lactate Dehydrogenase Discriminate Progressive From Nonprogressive American Joint Committee on Cancer Stage IV MelanomaJournal of Clinical Oncology, 1999