Phase control of absorption in large polyatomic molecules

Abstract
The phenomenon of interference of the amplitude for absorption of one photon of frequency 3ω and the amplitude for absorption of three photons of frequency ω was theoretically predicted by Shapiro, Hepburn, and Brumer. The interference was demonstrated experimentally by varying the relative phase between the tripled frequency photon and three photons with the fundamental frequency by the groups of Elliott and Gordon in atoms and small molecules. In order to see how general this phenomenon is, five compounds were studied, ammonia, trimethylamine, triethylamine, cyclooctatetraene, and 1,1‐dimethylhydrazine. CH3I was used as the tripling gas for light in the range 604–600 nm. Interference was observed in all cases. The last four compounds have low ionization potentials and interference was observed between a 3+1 and a 1+1 ionization process with a maximum modulation of 22%. NH3 with a higher ionization potential requires absorption of 3+2 or 1+2 photons and exhibits a maximum modulation of 33%. We conclude that molecular size is no obstacle and that as long as a molecule has sufficiently strong absorption at the tripled frequency, and sufficient vapor pressure, and the laser fundamental beam is very strong, phase control of interference is observable.