Therapeutic Effect of Dexamethasone in T-2 Toxicosis

Abstract
T-2 Toxin is a mycotoxin that induces toxemia characterized by numerous hematological and biochemical changes. We have previously shown that prostaglandin (PG) production in brain tissue is increased following T-2 toxin. The present study was designed in order to test the effect of dexamethasone on brain prostaglandins and survival of rats subjected to T-2 toxin. Furthermore, the effect of BW 755c, a dual inhibitor of the cyclooxygenase and lipoxygenase pathways of arachidonate metabolism, on the survival of rats exposed to T-2 toxin was also examined. The present study demonstrated that dexamethasone increases the survival of rats exposed to a highly lethal T-2 toxicosis. This effect was demonstrated at low as well as high doses and at different times after T-2 administration. Dexamethasone depressed PGE2 levels in the brain cortex 6 hr after T-2 toxin but abolished the reduction of PGE2 in brain cortex seen 24 hr after T-2. BW 755c had no consistent effect on the survival of rats in T-2 toxicosis. It is suggested that dexamethasone might be a useful therapeutic agent in T-2 toxicosis in animals and humans, but its mechanism of action remains obscure.