Abstract
The vomeronasal and septal olfactory organs are two neurosensory structures in the mammalian nasal septum which are poorly understood relative to the main olfactory system. The vomeronasal organ is a paired, blind-ending tubular structure that opens rostrally into the nasal cavity in some species and into the incisive ducts in others. When present in mammals, the septal olfactory organ is an island of olfactory mucosa positioned such that it is in the primary air pathway in the caudal portion of the nasal cavity. Mammalian nasal glands, with a diverse histochemical and ultrastructural morphology, secrete a variety of substances onto the mucosal surface. One of these substances, odorant binding protein, localized in bovine nasal glands and lateral nasal glands of rodents, may be important in the capture and conveyance of odorant molecules to olfactory receptors. The objectives of this paper are to present original data while reviewing the literature on the ultrastructure of vomeronasal and septal olfactory neuroepithelia, and of vomeronasal, bovine nasal, and lateral nasal glands. Nasal tissues from pigs, calves, and hamsters were prepared for electron microscopy. Neurosensory epithelia of the porcine vomeronasal organ and the hamster septal olfactory organ are similar to that described for the vomeronasal and septal olfactory organs of other mammals. Bovine nasal and rodent lateral nasal glands consist of subregions which differ morphologically; the most abundant acinar cell type in the bovine nasal gland contains lightly electron dense secretory granules while that of the rodent lateral nasal gland contains both small electron dense and large, electron lucent granules. The porcine vomeronasal gland contains numerous small, dense granules of a diverse morphology.