Granulocyte-Macrophage Colony-Stimulating Factor Amplifies Lipopolysaccharide-induced Bronchoconstriction by a Neutrophil- and Cyclooxygenase 2-Dependent Mechanism

Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is used to ameliorate neutropenia in patients after antineoplastic treatment. It has also been suggested as an adjunct treatment in septic patients; however, the recruitment and priming of leukocytes by GM-CSF bears the hazard of a hyperinflammatory response. In particular, the role of GM-CSF in pulmonary functions in septic lungs is still unclear. Therefore, we pretreated rats in vivo with GM-CSF (50 microg/kg, intravenous) and assessed the pulmonary functions of their subsequently prepared isolated perfused lungs when exposed to subtoxic concentrations of lipopolysaccharide (LPS, 2 microg/ml). These lungs showed enhanced expression of cyclooxygenase 2 (COX-2), a significant increase in thromboxane (TX) and tumor necrosis factor (TNF) release into the venous perfusate, and bronchoconstriction. COX-2 inhibition or blocking of the TX receptor abolished the GM-CSF/LPS-induced bronchoconstriction, but not the TNF release. Neutralizing antibodies against TNF did not prevent GM-CSF/LPS-induced bronchoconstriction. After GM-CSF pretreatment, massive neutrophil invasion into the lung occurred. Neutropenic rats were protected against GM-CSF/ LPS-induced lung injury. Similar results were obtained in rats pretreated with G-CSF instead of GM-CSF. We conclude that GM-CSF pretreatment exacerbates pulmonary injury by low-dose LPS via COX-2 expression, TX release, and bronchoconstriction by initiating neutrophil invasion and activation.

This publication has 30 references indexed in Scilit: