Learning Globally-Consistent Local Distance Functions for Shape-Based Image Retrieval and Classification
- 1 January 2007
- conference paper
- Published by Institute of Electrical and Electronics Engineers (IEEE)
- No. 15505499,p. 1-8
- https://doi.org/10.1109/iccv.2007.4408839
Abstract
We address the problem of visual category recognition by learning an image-to-image distance function that attempts to satisfy the following property: the distance between images from the same category should be less than the distance between images from different categories. We use patch-based feature vectors common in object recognition work as a basis for our image-to-image distance functions. Our large-margin formulation for learning the distance functions is similar to formulations used in the machine learning literature on distance metric learning, however we differ in that we learn local distance functions-a different parameterized function for every image of our training set-whereas typically a single global distance function is learned. This was a novel approach first introduced in Frome, Singer, & Malik, NIPS 2006. In that work we learned the local distance functions independently, and the outputs of these functions could not be compared at test time without the use of additional heuristics or training. Here we introduce a different approach that has the advantage that it learns distance functions that are globally consistent in that they can be directly compared for purposes of retrieval and classification. The output of the learning algorithm are weights assigned to the image features, which is intuitively appealing in the computer vision setting: some features are more salient than others, and which are more salient depends on the category, or image, being considered. We train and test using the Caltech 101 object recognition benchmark.Keywords
This publication has 12 references indexed in Scilit:
- Multiclass Object Recognition with Sparse, Localized FeaturesPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2006
- Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene CategoriesPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2006
- Geometric blur for template matchingPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2005
- Object Recognition with Features Inspired by Visual CortexPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2005
- Shape Matching and Object Recognition Using Low Distortion CorrespondencesPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2005
- Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object CategoriesPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2005
- Combining generative models and Fisher kernels for object recognitionPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2005
- Learning to detect natural image boundaries using local brightness, color, and texture cuesPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2004
- Algorithmic Stability and Sanity-Check Bounds for Leave-One-Out Cross-ValidationNeural Computation, 1999
- Object recognition from local scale-invariant featuresPublished by Institute of Electrical and Electronics Engineers (IEEE) ,1999