Formation of hydroxyapatite in hydrogels from tetracalcium phosphate/dicalcium phosphate mixtures.

Abstract
Apatitic calcium phosphate cements, formed by the ambient reaction of tetracalcium phosphate (TTCP) with dicalcium phosphates (DCP), have been recently reported. H2O or dilute aq. H3PO4 (0.2%) is used as the liquid vehicle for this reaction. The aim of this study was to ascertain if hydroxyapatite (HAp) can form in self-cured hydrogel composites containing TTCP/DCP mixes. The setting times (ST) and diametral tensile strengths (DTS) of these hydrogel composites were also determined. The hydrogels were of two types: (1) vinyl thermosets derived from the copolymerization of HEMA (2-hydroxyethyl methacrylate) and cross-linking monomers, and (2) polyelectrolyte-based hydrogels formed from aq. poly(alkenoic acids), e.g., poly(acrylic acid). Cylindrical specimens 6 mm D x 3 mm H were prepared and stored in H2O for up to 30 days. The HEMA composites were hardened in 7-15 min by free radical initiation (benzoyl peroxide/tertiary aromatic amine). The polyelectrolyte cements were hardened in 6-8 min. After various periods of storage in H2O at 37 degrees C, some of the specimens were examined by X-ray spectroscopy for HAp. HAp formation was not observed in the HEMA composites even after 30 days of H2O storage but was detected in the polyacid cements. The 24-h DTS values of the HEMA composites (14-26 MPa) were higher than those of the polyacid cements (7-12 MPa). Both the H2O content and pH may thus be factors controlling the rate and extent of HAp formation in hydrogel composites containing TTCP/DCP mixtures.

This publication has 0 references indexed in Scilit: