Molecular Aspects of Pesticide Degradation by Microorganisms

Abstract
Microorganisms are able to degrade a large variety of compounds, including pesticides under laboratory conditions. However, methods have yet to be developed to decontaminate the environment from residues of pesticides. Pesticidal degradative genes in microbes have been found to be located on plasmids, transposons, and/or on chromosomes. Recent studies have provided clues to the evolution of degradative pathways and the organization of catabolic genes, thus making it much easier to develop genetically engineered microbes for the purpose of decontamination. Genetic manipulation offers a way of engineering microorganisms to deal with a pollutant, including pesticides that may be present in the contaminated sites. The simplest approach is to extend the degradative capabilities of existing metabolic pathways within an organism either by introducing additional enzymes from other organisms or by modifying the specificity of the catabolic genes already present. Continuous efforts are required in this direction, and at present several bacteria capable of degrading pesticides have been isolated from the natural environment. Catabolic genes responsible for the degradation of several xenobiotics, including pesticides, have been identified, isolated, and cloned into various other organisms such as Streptomyces, algae, fungi, etc. In addition, recombinant DNA studies have made it possible to develop DNA probes that are being used to identify microbes from diverse environmental communities with an unique ability to degrade pesticides.

This publication has 100 references indexed in Scilit: