Saturation of color forces and nuclear binding

Abstract
We discuss an approach to understanding the saturation of forces in chromodynamics. Our formulation is suggested by the observation that many lattice-gauge-theory calculations give results well approximated by considering the dynamics of stringlike flux tubes. By looking at multiquark Green’s functions in the strong-coupling, quenched, approximations of lattice chromodynamics we find examples of configuration mixing which can allow the binding of color-singlet hadrons into larger composite systems. We surmise that this configuration mixing is crucial to the understanding of nuclear binding. As a simple example we discuss the binding of two mesons composed of heavy, static, quarks into a deuteronlike object. Our results suggest that the magnitude of nuclear binding can be deduced by measuring a finite number of Wilson-loop configurations in lattice QCD.

This publication has 35 references indexed in Scilit: