The Effect of Spermatogenic Disruption on the Ability of Testicular Fluid to Stimulate Androgen Production by Normal Leydig Cells

Abstract
Reports from this and other laboratories have concluded that unilateral disruption of spermatogenesis induces a predominantly ipsilateral increase in the responsiveness of Leydig cells to stimulation with luteinizing hormone (LH) and have suggested that if such effects were mediated by locally produced hormones then such "factors" should be detectable in testicular intestitial fluid. We sought to demonstrate such factors in testicular fluid from gonads subjected to a variety of treatments that disrupt gametogenesis. Fluid (TF) was drained from testes of adult rats that had been sham treated, irradiated, or treated with busulfan in utero, made unilaterally or bilaterally cryptorchid, or were unilaterally and bilaterally efferent-duct-ligated. Leydig cells obtained from normal rats basally produced 8 .+-. 1 ng androgen/106 Leydig cells/2 h and, when maximally stimulated with LH, produced 66 .+-. 3 ng. The addition of the various TFs to the incubations significantly increased both basal and LH-stimulated androgen production. TF from lesioned testes was more effective in increasing androgen production than TF from control rats. Unilateral lesions caused an increase in the ability of TF from the disrupted testes to increase the androgen production by normal Leydig cells, as compared to TF from contralateral testes. Thus, locally produced "factor(s)" do appear to modify Leydig cell function. Additional studies using TF from control and bilaterally cryptorchid animals suggest that the "factor" in TF is heat-labile; has a molecular size between bovine serum albumin and ovalbumin; exerts a portion of its action independently of cAMP formation; and does not appear to be LH, follicle-stimulating hormone, prolactin, or gonadotropin-releasing hormone.

This publication has 21 references indexed in Scilit: