Abstract
Humanoid robotics is a new challenging field. To cooperate with human beings, humanoid robots not only have to feature human-like form and structure but, more importantly, they must possess human-like characteristics regarding motion, communication and intelligence. In this paper, we propose an algorithm for solving the inverse kinematics problem associated with the redundant robot arm of the humanoid robot ARMAR. The formulation of the problem is based on the decomposition of the workspace of the arm and on the analytical description of the redundancy of the arm. The solution obtained is characterized by its accuracy and low cost of computation. The algorithm is enhanced in order to generate human-like manipulation motions from object trajectories.

This publication has 9 references indexed in Scilit: