Comparison of patient doses in 256-slice CT and 16-slice CT scanners
- 1 January 2006
- journal article
- research article
- Published by Oxford University Press (OUP) in The British Journal of Radiology
- Vol. 79 (937) , 56-61
- https://doi.org/10.1259/bjr/39775216
Abstract
The 256-slice CT-scanner has been developed at the National Institute of Radiological Sciences. Nominal beam width was 128 mm in the longitudinal direction. When scanning continuously at the same position to obtain four-dimensional (4D) images, the effective dose is increased in proportion to the scan time. Our purpose in this work was to measure the dose for the 256-slice CT, to compare it with that of the 16-slice CT-scanner, and to make a preliminary assessment of dose for dynamic 3D imaging (volumetric cine imaging). Our group reported previously that the phantom length and integration range for dosimetry needed to be at least 300 mm to represent more than 90% of the line integral dose with the beam width between 20 mm and 138 mm. In order to obtain good estimates of the dose, we measured the line-integral dose over a 300 mm range in PMMA (polymethylmethacrylate) phantoms of 160 mm or 320 mm diameter and 300 mm length. Doses for both CT systems were compared for a clinical protocol. The results showed that the 256-slice CT generates a smaller dose than the 16-slice CT in all examinations. For volumetric cine imaging, we found an acceptable scan time would be 6 s to 11 s, depending on examinations, if dose must be limited to the same values as routine examinations with a conventional multidetector CT. Finally, we discussed the studies necessary to make full use of volumetric cine imaging.Keywords
This publication has 6 references indexed in Scilit:
- Physical performance evaluation of a 256-slice CT-scanner for four-dimensional imagingMedical Physics, 2004
- Development and performance evaluation of the first model of 4-D CT-scannerIEEE Transactions on Nuclear Science, 2003
- Large-area two-dimensional detector for real-time three-dimensional CT (4D CT)Published by SPIE-Intl Soc Optical Eng ,2001
- A dose reduction x-ray beam positioning system for high-speed multislice CT scannersMedical Physics, 2000
- Cystic Fibrosis: Usefulness of Thoracic CT in the Examination of Patients before Lung TransplantationRadiology, 1999
- Practical cone-beam algorithmJournal of the Optical Society of America A, 1984