Effect of regulatory mechanism on hyperbolic reaction network properties

Abstract
The notion that the regulated and flux-controlling enzyme in a metabolic network need not correspond suggests that the purpose of regulation may not be flux homeostasis under all physiological circumstances. Additionally, the fact that diversity in the function of intact metabolic networks exists suggests that in addition to time constant separation, other kinetic structure/regulatory mechanism patterns exist. In order to compliment and expand prior work on identifying kinetic structure–property relationships in networks, the present work explores in a general way how the control, dynamic, and energetic properties of metabolic networks depend on operating point, kinetic structure, and regulatory mechanism. The basic feature of trade-offs between properties is illustrated and used as a basis for indicating how particular subsets of structure, regulatory mechanism, and operating point emphasize certain properties that can be associated with a physiological function. Examples of scavenging trace metabolites and amphibolite coordination are proposed. Microstructure logic in terms of turnover number distributions as well as a potential mixed polynomial network analysis approach are also discussed.