Charge transport through a single-electron transistor with a mechanically oscillating island

Abstract
We consider a single-electron transistor (SET) whose central island is a nanomechanical oscillator. The gate capacitance of the SET depends on the mechanical displacement, thus, the vibrations of the island may influence the transport properties. Harmonic oscillations of the island and thermal vibrations change the transport characteristics in different ways. The changes in the Coulomb blockade oscillations and in the current noise spectral density help to determine in what way the island oscillates, and allow to estimate the amplitude and the frequency of the oscillations.
All Related Versions