Ebola Virus Protein VP35 Impairs the Function of Interferon Regulatory Factor-Activating Kinases IKKε and TBK-1
Top Cited Papers
- 1 April 2009
- journal article
- Published by American Society for Microbiology in Journal of Virology
- Vol. 83 (7) , 3069-3077
- https://doi.org/10.1128/jvi.01875-08
Abstract
The Ebola virus (EBOV) VP35 protein antagonizes the early antiviral alpha/beta interferon (IFN-alpha/beta) response. We previously demonstrated that VP35 inhibits the virus-induced activation of the IFN-beta promoter by blocking the phosphorylation of IFN-regulatory factor 3 (IRF-3), a transcription factor that is crucial for the induction of IFN-alpha/beta expression. Furthermore, VP35 blocks IFN-beta promoter activation induced by any of several components of the retinoic acid-inducible gene I (RIG-I)/melanoma differentiation-associated gene 5 (MDA-5)-activated signaling pathways including RIG-I, IFN-beta promoter stimulator 1 (IPS-1), TANK-binding kinase 1 (TBK-1), and IkappaB kinase epsilon (IKKepsilon). These results suggested that VP35 may target the IRF kinases TBK-1 and IKKepsilon. Coimmunoprecipitation experiments now demonstrate physical interactions of VP35 with IKKepsilon and TBK-1, and the use of an IKKepsilon deletion construct further demonstrates that the amino-terminal kinase domain of IKKepsilon is sufficient for interactions with either IRF-3 or VP35. In vitro, either IKKepsilon or TBK-1 phosphorylates not only IRF-3 but also VP35. Moreover, VP35 overexpression impairs IKKepsilon-IRF-3, IKKepsilon-IRF-7, and IKKepsilon-IPS-1 interactions. Finally, lysates from cells overexpressing IKKepsilon contain kinase activity that can phosphorylate IRF-3 in vitro. When VP35 is expressed in the IKKepsilon-expressing cells, this kinase activity is suppressed. These data suggest that VP35 exerts its IFN-antagonist function, at least in part, by blocking necessary interactions between the kinases IKKepsilon and TBK-1 and their normal interaction partners, including their substrates, IRF-3 and IRF-7.Keywords
This publication has 58 references indexed in Scilit:
- Structure of the Ebola VP35 interferon inhibitory domainProceedings of the National Academy of Sciences, 2009
- Whole-Genome Expression Profiling Reveals That Inhibition of Host Innate Immune Response Pathways by Ebola Virus Can Be Reversed by a Single Amino Acid Change in the VP35 ProteinJournal of Virology, 2008
- Select Paramyxoviral V Proteins Inhibit IRF3 Activation by Acting as Alternative Substrates for Inhibitor of κB Kinase ϵ (IKKe)/TBK1Journal of Biological Chemistry, 2008
- The VP35 Protein of Ebola Virus Inhibits the Antiviral Effect Mediated by Double-Stranded RNA-Dependent Protein Kinase PKRJournal of Virology, 2007
- Reverse Genetic Generation of Recombinant Zaire Ebola Viruses Containing Disrupted IRF-3 Inhibitory Domains Results in Attenuated Virus Growth In Vitro and Higher Levels of IRF-3 Activation without Inhibiting Viral Transcription or ReplicationJournal of Virology, 2006
- Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virusNature, 2005
- VISA Is an Adapter Protein Required for Virus-Triggered IFN-β SignalingMolecular Cell, 2005
- Identification and Characterization of MAVS, a Mitochondrial Antiviral Signaling Protein that Activates NF-κB and IRF3Cell, 2005
- IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon inductionNature Immunology, 2005
- The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responsesNature Immunology, 2004