Imaging Dedicated and Multifunctional Neural Circuits Generating Distinct Behaviors

Abstract
Central pattern generators (CPGs) control both swimming and crawling in the medicinal leech. To investigate whether the neurons comprising these two CPGs are dedicated or multifunctional, we used voltage-sensitive dye imaging to record from ∼80% of the ∼400 neurons in a segmental ganglion. By eliciting swimming and crawling in the same preparation, we were able to identify neurons that participated in either of the two rhythms, or both. More than twice as many cells oscillated in-phase with crawling (188) compared with swimming (90). Surprisingly, 84 of the cells (93%) that oscillated with swimming also oscillated with crawling. We then characterized two previously unidentified interneurons, cells 255 and 257, that had interesting activity patterns based on the imaging results. Cell 255 proved to be a multifunctional interneuron that oscillates with and can perturb both rhythms, whereas cell 257 is an interneuron dedicated to crawling. These results show that the swimming and crawling networks are driven by both multifunctional and dedicated circuitry.