Acoustic rhinometry: validation by three-dimensionally reconstructed computer tomographic scans.

Abstract
The aim of the present study was a validation of acoustic rhinometry (AR) by computed tomography (CT). Six healthy subjects were examined by CT and AR. The CT data were processed in a computer program (AutoCAD), and a virtual three-dimensional model of each nasal cavity was constructed. This model permitted an individual prediction of the center line of the sound wave propagation through the air volume of the nasal cavity with the cross-sectional areas oriented perpendicularly to this line. The area-distance curves derived from AR and CT were compared. Linear regression analysis revealed a reasonable agreement of AR and CT in the anterior nose below a mean of 6 cm distance from the nostrils [r = 0.839, P < 0.01, m = 1.123, b = -0.113 (AR = m x CT + b)]. The measuring accuracy using CT as gold standard revealed a mean error at the nasal valve of 100%). In conclusion, the measurements were reasonably accurate for diagnostic use up to the turbinate head region. Certain factors induce an overestimation of the true areas beyond this region. However, these factors are constant and reproducible in a single subject, and intraindividual comparative measurements are possible beyond the turbinate head region.