Oxime and dithiolane derivatives of 5-formyl-2'-deoxyuridine and their 5'-phosphates: antivirial effects and thymidylate synthetase inhibition
- 1 June 1980
- journal article
- research article
- Published by American Chemical Society (ACS) in Journal of Medicinal Chemistry
- Vol. 23 (6) , 661-665
- https://doi.org/10.1021/jm00180a016
Abstract
5-Formyl-2''-deoxyuridine (2a), an effective inhibitor of herpes simplex virus type 1 or 2 (HSV-1, HSV-2) and vaccinia virus, was converted to the oxime (3a) and dithiolane (4a) derivatives. The oxime (3a) was equally as potent as the formyl compound against HSV-1, but 1/5 as active against HSV-2, 100 times less effective against vaccinia and 25 times less toxic for the host cells. Compound 3a was about 10 times less active than 2a in inhibiting thymidylate synthetase in vivo (as reflected by a differential inhibition of dThd and dUrd incorporation into host cell DNA). The dithiolane (4a) did not exert an appreciable effect on either virus multiplication or dThd or dUrd incorporation, nor was it cytotoxic. All these compounds as their 5''-phosphate derivatives were potent in vitro inhibitors of thymidylate synthetase (Lactobacillus casei). The inhibition was competitive with substrate with Ki/Km ratios of 0.05 for the formyl 2b, 0.5 for the oxime 3b and 0.2 for the dithiolane 4b. Thus, 3b was 10 times less active than 2b as an in vitro inhibitor of thymidylate synthetase, which appears to corroborate the in vivo findings.This publication has 2 references indexed in Scilit:
- Synthesis of 5-[(methylthio)methyl]-2'-deoxyuridine, the corresponding sulfoxide and sulfone, and their 5'-phosphates: antiviral effects and thymidylate synthetase inhibitionJournal of Medicinal Chemistry, 1980
- 5-Nitro-2′-deoxyuridylate: A mechanism-based inhibitor of thymidylate synthetaseBiochemical and Biophysical Research Communications, 1978