Abstract
The high-resolution spectrum of the ν4 fundamental band of NH3D+ has been observed in absorption in a hollow-cathode discharge with a difference-frequency laser system. The molecular constants have been determined through a least squares fit of the observed transition wave numbers to an effective Hamiltonian. The equilibrium rotational constant is estimated to be 4.438 ± 0.027 cm−1, from which the equilibrium N—H bond length is calculated to be 1.021 ± 0.003 Å. Some low-lying rotational transition frequencies in the ground state are calculated to assist in the search for pure rotational transitions in the laboratory and in interstellar space.

This publication has 0 references indexed in Scilit: