Parametric Inference for Biological Sequence Analysis
Preprint
- 26 January 2004
Abstract
One of the major successes in computational biology has been the unification, using the graphical model formalism, of a multitude of algorithms for annotating and comparing biological sequences. Graphical models that have been applied towards these problems include hidden Markov models for annotation, tree models for phylogenetics, and pair hidden Markov models for alignment. A single algorithm, the sum-product algorithm, solves many of the inference problems associated with different statistical models. This paper introduces the \emph{polytope propagation algorithm} for computing the Newton polytope of an observation from a graphical model. This algorithm is a geometric version of the sum-product algorithm and is used to analyze the parametric behavior of maximum a posteriori inference calculations for graphical models.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: