A Role for G Protein-Coupled Lysophospholipid Receptors in Sphingolipid-Induced Ca2+ Signaling in MC3T3-E1 Osteoblastic Cells

Abstract
Sphingolipids have been proposed to modulate cell function by acting as intracellular second messengers and through binding to plasma membrane receptors. Exposure of MC3T3-E1 osteoblastic cells to sphingosine (SPH), sphingosine-1-phosphate (SPP), or sphingosylphosphorylcholine (SPC) led to the release of Ca2+ from the endoplasmic reticulum (ER) and acute elevations in cytosolic-free Ca2+ ([Ca2+]i). Desensitization studies suggest that SPP and SPC bind plasma membrane endothelial differentiation gene (Edg) receptors for lysophosphatidic acid (LPA). Consistent with the coupling of Edg receptors to G proteins, SPP- and SPC-induced Ca2+ signaling was inhibited by pretreatment of the cells with pertussis toxin (PTx). Of the Edg receptors known to bind SPH derivatives in other cell types, MC3T3-E1 cells were found to express transcripts encoding Edg-1 and Edg-5 but not Edg-3, Edg-6, or Edg-8. In contrast to SPP and SPC, the ability of SPH to elicit [Ca2+]i elevations was affected neither by prior exposure of cells to LPA nor by PTx treatment. However, LPA-induced Ca2+ signaling was blocked in MC3T3-E1 cells previously exposed to SPH. Elevations in [Ca2+]i were not evoked by SPP or SPC in cells treated with 2-aminoethoxydiphenylborate (2-APB), an inhibitor of inositol 1,4,5-trisphosphate (IP3)-gated Ca2+ channels in the ER. No effect of 2-APB was observed on SPH- or LPA-induced [Ca2+]i elevations. The data support a model in which SPP and SPC bind Edg-1 and/or Edg-5 receptors in osteoblasts leading to the release of Ca2+ from the ER through IP3-gated channels.

This publication has 41 references indexed in Scilit: