Segregation after mitotic crossing-over in isodicentric X chromosomes

Abstract
Segregation after mitotic crossing-over in an isodicentric (idic) X chromosome with one active and one inactive centromere has given rise to two new cell lines, one in which the idic(Xpter) chromosome has two active centromeres (most of these chromosomes also have an inversion) and another in which neither centromere is active. The two X chromosomes are attached at the telomeres of their short arms. Similar segregation has given rise to two other cell lines with idic(Xq-) chromosomes. Other observations on segregation after mitotic crossing-over are reviewed. Unequal crossing-over has apparently played a major role in the evolution of various genes and heterochromatin. Retinoblastoma and Wilms tumor are in some cases associated with homozygosity of a chromosome segment resulting from mitotic crossing-over. Similarly, the high incidence of cancer in Bloom syndrome may be caused by mitotic crossing-over leading to homozygosity or amplification of oncogenes.