Vibrational relaxation of carbon monosulphide

Abstract
The relaxation of vibrationally excited CS, formed in the flash-initiated reaction: O(3P)+CS2→ SO + CS, has been studied by monitoring the absorption of the A1Π—X1Σ+(2,1) band photoelectrically. Rates of decay were measured in the presence of various added gases, and hence rate constants determined for the de-excitation of CS(ν= 1) by ortho-H2, para-H2, HD, 3He, D2, 4He, N2O, CO2, H2O, D2O, H2S and D2S. The much greater efficiency of N2O compared to CO2 shows clearly how the probability of vibration-vibration energy exchange is enhanced if both species are infra-red active. Vibration-rotation energy transfer may occur with the collision partners which have small moments of inertia. Where appropriate, experimental transition probabilities are compared to those predicted by Sharma's recently published theory.

This publication has 0 references indexed in Scilit: