Privacy-preserving distributed mining of association rules on horizontally partitioned data

Abstract
Data mining can extract important knowledge from large data collections ut sometimes these collections are split among various parties. Privacy concerns may prevent the parties from directly sharing the data and some types of information about the data. We address secure mining of association rules over horizontally partitioned data. The methods incorporate cryptographic techniques to minimize the information shared, while adding little overhead to the mining task.

This publication has 17 references indexed in Scilit: