Bone formation by rat bone marrow cells cultured on titanium fiber mesh: Effect of in vitro culture time

Abstract
The objective of this study was to examine the effect of cell culture time on bone formation by rat bone marrow cells seeded in titanium fiber mesh. As a seeding technique, a high cell suspension was used (3 × 106 cells/mL). Therefore, 30 meshes were repeatedly rotated in a 10 mL tube (containing 30 × 106 cells) on a rotation plate (2 rpm) for 3 h. Osteogenic cells were cultured for 1, 4, and 8 days on titanium fiber mesh and finally implanted subcutaneously in rats. Meshes without cells were also implanted subcutaneously in rats. DNA and scanning electron microscopy (SEM) analyses and calcium measurements determined cellular proliferation and differentiation during the in vitro incubation period of the mesh implants. Four weeks after implant insertion, the animals were sacrificed. The implants, with their surrounding tissue, were retrieved and prepared for histologic evaluation and calcium measurements. DNA analysis of the in vitro experiment showed a lag phase from day 1 through day 4, but a 42% increase in DNA between days 4 and 8. SEM and calcium measurements indicated an increase in calcium from day 1 to day 4, yet only a small but significant increase from days 4 to 8. Histologic analysis demonstrated that bone was formed in all day 1 and day 4 implants, and that the bone-like tissue was present uniformly through the meshes. The bony tissue was morphologically characterized by osteocytes embedded in a mineralized matrix, with a layer of osteoid and osteoblasts at the surface. The day 8 implants showed only calcium phosphate deposition in the titanium fiber mesh. Calcium measurements of the implants revealed that calcification in day 1 implants was significantly higher (p < 0.05) compared to day 4 and day 8 implants. No significant difference in calcium content existed between day 4 and day 8 implants. On the basis of our results, we conclude that 1) bone formation was generated more effectively in osteogenic cells by a short culture time after seeding in titanium fiber mesh; 2) dynamic cell seeding is probably more effective than static cell seeding; and 3) selection of the right cells from the heterogenous bone marrow population remains a problem. © 2002 Wiley Periodicals, Inc. J Biomed Mater Res 62: 350–358, 2002