Temporal Interpolation Methods for the Clouds and the Earth’s Radiant Energy System (CERES) Experiment

Abstract
The Clouds and the Earth’s Radiant Energy System (CERES) is a NASA multisatellite measurement program for monitoring the radiation environment of the earth–atmosphere system. The CERES instrument was flown on the Tropical Rainfall Measuring Mission satellite in late 1997, and will be flown on the Earth Observing System morning satellite in 1998 and afternoon satellite in 2000. To minimize temporal sampling errors associated with satellite measurements, two methods have been developed for temporally interpolating the CERES earth radiation budget measurements to compute averages of top-of-the-atmosphere shortwave and longwave flux. The first method is based on techniques developed from the Earth Radiation Budget Experiment (ERBE) and provides radiation data that are consistent with the ERBE processing. The second method is a newly developed technique for use in the CERES data processing. This technique incorporates high temporal resolution data from geostationary satellites to improve modeling of d... Abstract The Clouds and the Earth’s Radiant Energy System (CERES) is a NASA multisatellite measurement program for monitoring the radiation environment of the earth–atmosphere system. The CERES instrument was flown on the Tropical Rainfall Measuring Mission satellite in late 1997, and will be flown on the Earth Observing System morning satellite in 1998 and afternoon satellite in 2000. To minimize temporal sampling errors associated with satellite measurements, two methods have been developed for temporally interpolating the CERES earth radiation budget measurements to compute averages of top-of-the-atmosphere shortwave and longwave flux. The first method is based on techniques developed from the Earth Radiation Budget Experiment (ERBE) and provides radiation data that are consistent with the ERBE processing. The second method is a newly developed technique for use in the CERES data processing. This technique incorporates high temporal resolution data from geostationary satellites to improve modeling of d...