Peripheral Blood Stem Cells Differ from Bone Marrow Stem Cells in Cell Cycle Status, Repopulating Potential, and Sensitivity Toward Hyperthermic Purging in Mice Mobilized with Cyclophosphamide and Granulocyte Colony-Stimulating Factor

Abstract
Peripheral blood stem cells (PBSCs) are increasingly used in autologous stem cell transplantations. We investigated the mobilizing effect of a combined cyclophosphamide (CTX) and granulocyte colony-stimulating factor (G-CSF) treatment on progenitor cells (STRA) and primitive stem cells (LTRA) in normal and splenectomized CBA/H mice. This combined treatment not only resulted in mobilization but also in expansion of hematopoietic stem cell subsets. The latter phenomenon was somewhat suppressed in splenectomized animals, but in these mice an enhanced mobilization of STRA and LTRA cells into the peripheral blood was observed. Furthermore, we studied the engraftment potential of mobilized PBSCs. Mice transplanted with PBSCs engrafted significantly better compared to mice transplanted with bone marrow stem cells from control and mobilized mice. The repopulation curve was characterized by a less-deep nadir indicating that the differences occur during the initial phase after transplantation. Contamination of autologous PBSC transplants with malignant cells is noticed frequently and is the basis for urging the use of purging modalities. Here we used hyperthermia and found that the mobilized progenitor cells in peripheral blood are more resistant to hyperthermia than those in the bone marrow (i.e., a survival of 11 ± 5% after 90 min at 43°C for peripheral blood progenitors, compared to 0.5 ± 0.4% in bone marrow of mobilized animals and 1.6 ± 0.5% in normal animals, respectively). Hyperthermic purging does not eliminate the superior repopulating features of a PBSC graft, as is demonstrated by an increased median survival time of lethally irradiated mice transplanted with purged PBSCs. In conclusion, our data demonstrate that CTX + G-CSF-mobilized PBSCs have an enhanced engraftment potential concomitantly with a decreased cycling activity and hence a decreased hyperthermic sensitivity. These findings support the use of these mobilized PBSCs for autologous stem cell transplantation and strengthen the basis for using hyperthermia as a purging modality.