Localization of discontinuous epitopes of herpes simplex virus glycoprotein D: use of a nondenaturing ("native" gel) system of polyacrylamide gel electrophoresis coupled with Western blotting

Abstract
Previously, a panel of monoclonal antibodies (MCAb) was used to define specific epitopes of herpes simplex virus glycoprotein D (gD) (R. J. Eisenberg et. al., J. Virol. 53:634-644, 1985). Three groups of antibodies recognized continuous epitopes; group VII reacted with residues 11 to 19 of the mature protein (residues 36 to 44 of the predicted sequence), group II reacted with residues 272 to 279, and group V reacted with residues 340 to 356. Four additional antibody groups recognized discontinuous epitopes of gD, since their reactivity was lost when the glycoprotein was denatured by reduction and alkylation. Our goal in this study was to localize more precisely the discontinuous epitopes of gD. Using a nondenaturing system of polyacrylamide gel electrophoresis ("native" gel electrophoresis) coupled to Western blotting, we analyzed the antigenic activity of truncated forms of gD. These fragments were generated either by recombinant DNA methods or by cleavage of purified native gD-1 (gD obtained from herpex simplex virus type 1) and gD-2 (gD obtained from herpes simplex virus type 2) with Staphyloccus aureus protease V8. Antibodies in groups III, IV, and VI recognized three truncated forms of gD-1 produced by recombinant DNA methods, residues 1 to 287, 1 to 275, and 1 to 233. Antibodies in group I recognized the two larger forms but did not react with the gD-1 fragment of residues 1 to 233. On the basis of these and previous results, we concluded that a portion of epitope I was located within residues 233 to 259 and that epitopes III, IV, and VI were upstream of residue 233. Antibodies to continuous epitopes identified protease V8 fragments of gD-1 and gD-2 that contained portions of either the amino or carboxy regions of the proteins. None of the V8 fragments, including a 34K polypeptide containing residues 227 to 369, reacted with group I antibodies. This result indicated that a second portion of epitope I was located upstream of residue 227. Two amino-terminal fragments of gD-1, 33K and 30K, reacted with group II, IV, and VI antibodies. A 33K fragment of gD-2 reacted with group III antibodies. Based on their size and reactivity with endo-.beta.-N-acetylglycosaminidase F, we hypothesized that the 33K and 30K molecules represented residues 1 to 226 and 1 to 182 of gD-1, respectively. These results suggest that epitopes III, IV, and VI are located within the first 182 residues of gD. The associatin of group I monoclonal antibodies with several important biological properties, including virus neutralization, protection by passive immunization, and inhibition of cell-to-cell fusion, implicate residues 233 to 259 of gD in these functions. The association of group IV antibodies with virus adsorption implicates gD residues upstream of 182 in this function.

This publication has 61 references indexed in Scilit: