A new equation for calculating wave loads on offshore structures
- 1 July 1989
- journal article
- research article
- Published by Cambridge University Press (CUP) in Journal of Fluid Mechanics
- Vol. 204, 295-324
- https://doi.org/10.1017/s002211208900176x
Abstract
This paper derives an equation for the potential-flow wave loading on a lattice-type offshore structure moving partially immersed in waves. It is for the limiting case of small lattice-member diameter, and deals entirely in member-centreline fluid properties, so that it can be applied computationally by a simple ‘stick model’ computer program. This field is currently served by a simple two-term semiempirical formula ‘Morison's equation’: the new equation is effectively a replacement for the Morison inertial term, allowing the Morison drag term (or some refinement of it) to describe exclusively the effects of vorticity, which can in principle be calculated to greater accuracy when isolated in this way.The new equation calculates the potential-flow wave load accurate to second order in wave height, which is a great improvement on ‘Morison's equation’: such results can currently only be sought by very much more complicated and computationally intensive methods, of currently uncertain repeatability. Moreover the third-order error is localized at the free-surface intersection, so the equation remains attractive for fully nonlinear problems involving intermittent immersion of lattice members, which are currently beyond even the most sophisticated of these computationally intensive methods. It is shown that the primary reason for this large contrast in computational efficiency is that the loads are derived from energy considerations rather than direct integration of surface pressures, which requires a lower level of flow detail for a given level of load-calculation accuracy.These improvements must of course be seen against the current levels of uncertainty over the calculation of vorticity-induced loads, which in many applications completely dwarf inaccuracies in potential-flow load calculation. The conditions are accordingly established under which the improvements are comparable to the total wave load predicted by the Morison drag and inertia terms in combination. They are that the lattice member diameter is greater than its length/10, or the relative fluid motion/5, or the structure's motion radius/20, or the wavelength/30: if any one of these conditions is satisfied, the new equation is worthwhile even when used in combination with simple vorticity-induced load calculations from a Morison drag term.Keywords
This publication has 20 references indexed in Scilit:
- Mean drift forces on arrays of bodies due to incident long wavesJournal of Fluid Mechanics, 1987
- Fundamentals concerning wave loading on offshore structuresJournal of Fluid Mechanics, 1986
- Computations of overturning wavesJournal of Fluid Mechanics, 1985
- Nonlinear-wave effects on fixed and floating bodiesJournal of Fluid Mechanics, 1982
- The deformation of steep surface waves on water - I. A numerical method of computationProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1976
- Note on the swimming of slender fishJournal of Fluid Mechanics, 1960
- On the motion of floating bodies II. Simple harmonic motionsCommunications on Pure and Applied Mathematics, 1950
- The pressure of water waves upon a fixed obstacleProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1940
- The forces on a body placed in a curved or converging stream of fluidProceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1928
- The energy of a body moving in an infinite fluid, with an application to airshipsProceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1928