Abstract
1. Galactosyltransferase activities in postnuclear supernatants and Golgi fractions from rat liver were assayed with two improved and simplified methods, using high‐ and low‐molecular‐weight acceptors. Transfer to N‐acetylglucosamine was measured after the separation of the reaction product N‐acetyllactosamine from all other radioactive molecules (including galactose) on an ion‐exchange column partially converted to the borate form. To determine the transfer of galactose to a glycoprotein acceptor we used ovomucoid, which accepts galactose without any previous chemical or enzymic modification.2. Both enzymic activities were enriched 60–80‐fold (compared with the post‐nuclear supernatant) in Golgi fractions, which were isolated on two subsequent sucrose gradients and identified morphologically by their high contents of stacked Golgi elements. The two activities could not be resolved by isolation of the Golgi fractions or by detergent solubilization. Each acceptor inhibited the galactose transfer to the other one (up to 95%), presumably because both compete for the same enzyme.3. The transferase activities were enhanced by the nonionic detergent Triton X‐100. The degree of activation depended directly on the amount of Triton bound to the membrane, i.e. the Triton/phospholipid ratio and not the w/v concentration of the detergent in the assay medium. This relationship persisted, regardless of the purity of the Golgi preparation: Half‐maximal activation occurred at the same Triton/phospholipid ratio in postnuclear supernatants as well as in isolated Golgi fractions. The activation could not be explained by complete solubilization, because 50% of the fully activated enzyme could still be sedimented (1 h, 100000 ×g).4. Galactose transfer to the high‐molecular‐weight acceptor required a higher Triton/phospholipid ratio for half‐maximal activation than did the transfer to the monosaccharide N‐acetylglucosamine (1 mg/mg compared with 0.5 mg/mg). The degree of activation maximally achieved was much higher with the protein acceptor (400%) than with the sugar (150%). Because both activities are probably due to the same enzyme, it is suggested that these differences in activation reflect properties of the membrane rather than the enzyme, e.g. the presence of a tight diffusion barrier for ovomucoid and the breakdown of this barrier by the detergent.