Spectroscopic imaging of human brain glutamate by water‐suppressed J‐refocused coherence transfer at 4.1 T

Abstract
The authors report the development and implementation of a water‐suppressed J‐refocused coherence transfer sequence to observe glutamate in human brain at 4.1 T. The sequence is modeled for I2S2 and I2S2M spin systems analytically and plotted for a range of echo times. In this sequence, water suppression and refocusing of J‐coupled resonances are achieved through a brief multiple quantum step without significant loss of signal. Phantom data are shown. Human brain spectroscopic imaging of glutamate, acquired with a total echo of 36 ms, demonstrates the application of the sequence to observe gray and white matter differences in glutamate content.