Abstract
The patterns of regional changes of sympathetic efferent activity evoked by thermal stimulation of the spinal cord and by arterial and primary tissue hypoxia were investigated in decerebrated, anesthetized and immobilized rabbits. Decerebration was performed either at the mid- or infracollicular level. The responses of the decerebrated rabbits evoked by spinal thermal stimulation were the same as those of intact rabbits, i.e., splanchnic and cardiac sympathetic activity increased and cutaneous sympathetic activity decreased during warming, while the reverse response was elicited by cooling. It is concluded that the typical thermoregulatory response pattern of the sympathetic nervous system can be produced also after the loss of hypothalamic integration, i.e., by integrative mechanisms in the lower brain stem and the spinal cord. In contrast, the responses of decerebrated rabbits to arterial and primary tissue hypoxia differed from those of intact rabbits in that they consisted in an overall activation in all investigated sympathetic branches. It is confirmed by this result that suprabulbar integration is essential for the generation of the inhibitory components in the differential sympathetic responses to hypoxia, which typically consist in cutaneous and cardiac sympathetic inhibition with splanchnic activation during arterial hypoxia and in cutaneous sympathetic inhibition with cardiac and splanchnic sympathetic activation during primary tissue hypoxia.