Determination of Cloud Vertical Structure from Upper-Air Observations

Abstract
A method is described to use rawinsonde data to estimate cloud vertical structure, including cloud-top and cloud-base heights, cloud-layer thickness, and the characteristics of multilayered clouds. Cloud-layer base and top locations are identified based on three criteria: maximum relative humidity in a cloud of at least 87%, minimum relative humidity of at least 84%, and relative humidity jumps exceeding 3% at cloud-layer top and base, where relative humidity is with respect to liquid water at temperatures greater than or equal to 0°C and with respect to ice at temperatures less than 0°C. The analysis method is tested at 30 ocean sites by comparing with cloud properties derived from other independent data sources. Comparison of layer-cloud frequencies of occurrence with surface observations shows that rawinsonde observations (RAOBS) usually detect the same number of cloud layers for low and middle clouds as the surface observers, but disagree more for high-level clouds. There is good agreement be... Abstract A method is described to use rawinsonde data to estimate cloud vertical structure, including cloud-top and cloud-base heights, cloud-layer thickness, and the characteristics of multilayered clouds. Cloud-layer base and top locations are identified based on three criteria: maximum relative humidity in a cloud of at least 87%, minimum relative humidity of at least 84%, and relative humidity jumps exceeding 3% at cloud-layer top and base, where relative humidity is with respect to liquid water at temperatures greater than or equal to 0°C and with respect to ice at temperatures less than 0°C. The analysis method is tested at 30 ocean sites by comparing with cloud properties derived from other independent data sources. Comparison of layer-cloud frequencies of occurrence with surface observations shows that rawinsonde observations (RAOBS) usually detect the same number of cloud layers for low and middle clouds as the surface observers, but disagree more for high-level clouds. There is good agreement be...

This publication has 0 references indexed in Scilit: