Cytochrome P-450 dependent binding of methapyrilene to DNA in vitro

Abstract
Methapyrilene ([14C]MPH) was found to bind to calf thymus DNA only after activation by both rat liver microsomes and NADPH. The cytochrome P-450 inhibitors 2,4-dichloro-6-phenylphenoxyethylamine, 2-diethylaminoethyl-2,2-diphenylvalerate and metyrapone inhibited binding, but methimazole, a flavin-dependent monooxygenase inhibitor, had no effect. However, 1,2-epoxy-3,3,3-trichloropropane, an epoxide hydrolase inhibitor, decreased binding by 30%. Pre-treatment of rats with isosafrole, pregnenolone-16.alpha.-carbonitrile or phenobarbital had little or no effect on binding while 3-methylcholanthrene pretreatment decreased binding by 37%. Incubations in the presence of either N-acetylcysteine, glutathione, catalase or glutathione-peroxidase decreased binding to DNA while superoxide dismutase had no effect. These data suggest that MPH is metabolically activated to a species which binds to DNA and that this activation may be mediated by cytochrome P-450 isozymes.