Weather Regimes and Preferred Transition Paths in a Three-Level Quasigeostrophic Model

Abstract
Multiple flow regimes are reexamined in a global, three-level, quasigeostrophic (QG3) model with realistic topography in spherical geometry. This QG3 model, using a T21 triangular truncation in the horizontal, has a fairly realistic climatology for Northern Hemisphere winter and exhibits multiple regimes that resemble those found in atmospheric observations. Four regimes are robust to changes in the classification method, k-means versus mixture modeling, and its parameters. These regimes correspond roughly to opposite phases of the Arctic Oscillation (AO) and the North Atlantic Oscillation (NAO), respectively. The Markov chain representation of regime transitions is refined here by finding the preferred transition paths in a three-dimensional (3D) subspace of the model's phase space. Preferred transitions occur from the positive phase of the NAO (NAO+) to that of the AO (AO+), from AO+ to NAO−, and from NAO− to NAO+, but not directly between opposite phases of the AO. The angular probability dens... Abstract Multiple flow regimes are reexamined in a global, three-level, quasigeostrophic (QG3) model with realistic topography in spherical geometry. This QG3 model, using a T21 triangular truncation in the horizontal, has a fairly realistic climatology for Northern Hemisphere winter and exhibits multiple regimes that resemble those found in atmospheric observations. Four regimes are robust to changes in the classification method, k-means versus mixture modeling, and its parameters. These regimes correspond roughly to opposite phases of the Arctic Oscillation (AO) and the North Atlantic Oscillation (NAO), respectively. The Markov chain representation of regime transitions is refined here by finding the preferred transition paths in a three-dimensional (3D) subspace of the model's phase space. Preferred transitions occur from the positive phase of the NAO (NAO+) to that of the AO (AO+), from AO+ to NAO−, and from NAO− to NAO+, but not directly between opposite phases of the AO. The angular probability dens...