Enhanced phosphodiesteratic breakdown and turnover of phosphoinositides during reperfusion of ischemic rat heart.

Abstract
In this study, we examined phosphoinositide metabolism during ischemia and reperfusion using an isolated and perfused rat heart. When myocardial phosphoinositides were prelabeled with [3H]inositol, reperfusion after 30 minutes of normothermic global ischemia resulted in significant accumulations of radiolabeled inositol phosphate, inositol bisphosphate, and inositol trisphosphate. Isotopic incorporation of [3H]inositol into phosphatidylinositol, phosphatidylinositol-4-phosphate, and phosphatidylinositol-4,5-bisphosphate was increased significantly in the heart reperfused with [3H]inositol after 30 minutes of ischemia compared with that perfused with [3H]inositol after 30 minutes of nonischemic perfusion. However, isotopic incorporation of [3H]glycerol into diacylglycerol, phosphatidic acid, and all of the three phosphoinositides was diminished in the reperfused hearts. Reperfusion of the ischemic heart prelabeled with [14C]arachidonic acid resulted in significant increases in [14C]diacylglycerol and [14C]phosphatidic acid. The enhanced accumulations of [3H]inositol phosphates during reperfusion were not affected by treatment with prazosin plus atropine or indomethacin, but were inhibited by hypoxic reperfusion, reperfusion with Ca2+-free buffer, or by mepacrine. These results suggest that myocardial reperfusion stimulates phosphodiesteratic breakdown and turnover of phosphoinositides, and increased Ca2+ influx caused by reperfusion may be involved in the mechanism of stimulation of phosphatidylinositol-specific phospholipase C activity in the rat heart.

This publication has 24 references indexed in Scilit: