EXCITATION SPECTRUM OF QUANTUM DOT IN STRONG MAGNETIC FIELD

Abstract
Microscopic theory of collective excitations of a quantum dot in a strong magnetic field is proposed. A complete analysis of diagrams in the perturbation theory over the Coulomb interaction is performed. The spectrum of low-lying excitations is calculated for the case of a parabolic quantum dot. It is shown to consist of three terms: single-particle drift, magnetoplasma and exciton ones, with the exciton term dominating the magnetoplasma one. In the framework of the semi-classical approach, the case of a non-parabolic quantum dot is also discussed. The experimental manifestations of the effects under investigation are discussed.

This publication has 0 references indexed in Scilit: